Question Number	Answer	Mark
1(a)	Arrow(s) downwards (1)	1
1(b)	Use of $E=V / d$ Use of $F=E Q$ $\begin{equation*} F=5.1 \times 10^{-16} \mathrm{~N} \tag{1} \end{equation*}$ $\begin{aligned} & \text { Example of calculation } \\ & \begin{array}{l} F=\left(160 \mathrm{~V} \times 1.6 \times 10^{-19} \mathrm{C}\right) / 5.0 \times 10^{-2} \mathrm{~m} \\ F=5.12 \times 10^{-16} \mathrm{~N} \end{array} \end{aligned}$	3
1(c)	Between the plates there is an acceleration/force which is vertical/upwards Constant horizontal velocity Outside the plates no (electric) field /force acts Or Outside the plates speed so large that gravitational effect negligible	3
1(d)(i)	Release of (surface) electrons due to heating (1)	1
1(d)(ii)	Use of $E_{\mathrm{k}}=1 / 2 m v^{2}$ Use of $V=W / Q$ p.d. $=410$ Example of calculation $\begin{aligned} & E_{\mathrm{k}}=9.11 \times 10^{-31} \mathrm{~kg} \times\left(1.2 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} / 2 \\ & E_{\mathrm{k}}=6.56 \times 10^{-17} \mathrm{~J} \\ & \text { p.d. }=\left(6.56 \times 10^{-17} \mathrm{~J}\right) /\left(1.6 \times 10^{-19} \mathrm{C}\right) \\ & \text { p.d. }=41 \end{aligned}$	3
	Total for question	11

Question Number	Answer		Mark
2(a)(i)	Use of $v=\frac{2 \pi r}{T} \quad$ Or $v=r w$ $v=2.1 \mathrm{~m} \mathrm{~s}^{-1}$ Example of calculation $v=\frac{2 \pi \times 0.4 \mathrm{~m}}{1.2 \mathrm{~s}}=2.09 \mathrm{~m} \mathrm{~s}^{-1}$	(1) (1)	
2(a)(ii)	Radius/circumference decreased Measured speed greater than actual speed (dependent on first mark)	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
2(a)(iii)	$\begin{aligned} & \text { Use of } F=B q v \\ & F=5.9 \times 10^{-24} \mathrm{~N} \end{aligned}$ Example of calculation $F=0.05 \mathrm{~T} \times 1.6 \times 10^{-19} \mathrm{C} \times 7.4 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}=5.9 \times 10^{-24} \mathrm{~N}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	2
2(b)	Use of $R \cos \theta=\mathrm{mg}$ and $R \sin \theta=F$ Or $\tan \theta=F / m g$ Use of $F=\frac{m v^{2}}{r}$ (do not award if mg used as the force) $\begin{aligned} & r=20 \mathrm{~m} \\ & \left(g=10 \mathrm{~m} \mathrm{~s}^{-2} \text { leads to } r=20.04 \mathrm{~m} \text { scores MP1 \& } 2 \text { only }\right) \end{aligned}$ Example of calculation $\begin{aligned} & r=\frac{m v^{2}}{m g \tan \theta}=\frac{v^{2}}{g \tan \theta} \\ & r=\frac{\left(9 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}}{9.81 \mathrm{~m} \mathrm{~s}^{-2} \times \tan 22^{\circ}}=20.4 \mathrm{~m} \end{aligned}$	(1) (1) (1)	3
	Total for question		9

Question Number	Answer	Mark
3(a)	To curve the tracks/paths Or to produce a centripetal force/acceleration Or to allow particles to spiral Or to produce an arc Or to produce circular motion So that momentum/energy/charge/ velocity/mass can be investigated	(1)
3(b)	The radius of curve gets less Or curvature increases (Because) particle slows down Or loses energy Or loses momentum	(1)
3(c)	(Magnetic field) out of page	$\mathbf{2}$
3(d)(i)	Does not leave a track Or there is only one visible track for μ^{+} Clear demonstration of charge conservation in this situation	$\mathbf{2}$
3(d)(ii)	Reference to momentum Reference to change of direction of the visible path (Hence) another particle must have an equal but opposite change of momentum Or another particle produced to conserve momentum	$\mathbf{(1)}$
	(1)	$\mathbf{2}$
	Total for question	(1)

Question Number	Answer		Mark
4(a)	Use of $\Phi=B A$ Converts cm to m Or mT to T $\Phi=1.1 \times 10^{-4} \mathrm{~Wb}$ Example of calculation $\begin{aligned} & \Phi=6.0 \times 10^{-2} \mathrm{~m} \times 2.4 \times 10^{-2} \mathrm{~m} \times 74 \times 10^{-3} \mathrm{~T} \\ & \Phi=1.07 \times 10^{-4} \mathrm{~Wb} \end{aligned}$	(1) (1) (1)	3
4(b)	Use of $\varepsilon=\Delta \Phi / \Delta t$ Use of time = distance/speed $\varepsilon=5.3 \mathrm{mV}$ (5.0 mV or 5.5 mV depending on value of Φ used, ecf value of Φ from (a)) Or Quotes $\mathcal{E}=B l v$ $l=6.0 \times 10^{-2} \mathrm{~m} \text { used }$ $\varepsilon=5.3 \mathrm{mV}$ Example of calculation $\begin{aligned} & \text { Time }=0.024 \mathrm{~m} / 1.2 \mathrm{~m} \mathrm{~s}^{-1} \\ & t=0.020 \mathrm{~s} \\ & \varepsilon=1.1 \times 10^{-4} \mathrm{~Wb} / 0.02 \mathrm{~s} \\ & =5.5 \mathrm{mV} \end{aligned}$	(1) (1) (1) (1) (1) (1)	3
4(c)	Use of $I=V / R$ Use of $F=B I l$ $F=9.8 \times 10^{-5} \mathrm{~N}$ (ecf value of ε from (b)) This force is too small to be felt. (this comment must be consistent with their value of force) Example of calculation $\begin{aligned} & I=5.5 \mathrm{mV} / / 0.25 \Omega=0.022 \mathrm{~A} \\ & F=74 \times 10^{-3} \mathrm{~T} \times 0.022 \mathrm{~A} \times 0.060 \mathrm{~m} \\ & F=9.8 \times 10^{-5} \mathrm{~N} \end{aligned}$	(1) (1) (1) (1)	4
	Total for question		10

