Question Number	Answer		Mark
1(a)	Arrow(s) downwards	(1)	1
1(b)	Use of $E = V/d$ Use of $F = EQ$ $F = 5.1 \times 10^{-16} \text{ N}$ $\frac{\text{Example of calculation}}{F = (160 \text{ V} \times 1.6 \times 10^{-19} \text{ C})/5.0 \times 10^{-2} \text{ m}}$ $F = 5.12 \times 10^{-16} \text{ N}$	(1) (1) (1)	3
1(c)	Between the plates there is an acceleration/force which is vertical/upwards Constant horizontal velocity Outside the plates no (electric) field /force acts Or Outside the plates speed so large that gravitational effect negligible	(1) (1) (1)	3
1(d)(i)	Release of (surface) electrons due to heating	(1)	1
1(d)(ii)	Use of $E_k = \frac{1}{2}mv^2$ Use of $V = W/Q$ p.d. = 410 $\frac{\text{Example of calculation}}{E_k = 9.11 \times 10^{-31} \text{ kg} \times (1.2 \times 10^7 \text{ m s}^{-1})^2/2}$ $E_k = 6.56 \times 10^{-17} \text{ J}$ p.d. = $(6.56 \times 10^{-17} \text{ J})/(1.6 \times 10^{-19} \text{ C})$	(1) (1) (1)	3
	p.d. = 41 Total for question		11

Question Number	Answer		Mark
2(a)(i)	Use of $v = \frac{2\pi r}{T}$ Or $v = rw$ $v = 2.1 \text{ m s}^{-1}$	(1) (1)	
	Example of calculation $v = \frac{2\pi \times 0.4 \text{ m}}{1.2 \text{ s}} = 2.09 \text{ m s}^{-1}$		2
2(a)(ii)	Radius/circumference decreased Measured speed greater than actual speed (dependent on first mark)	(1) (1)	2
2(a)(iii)	Use of $F = Bqv$ $F = 5.9 \times 10^{-24} \text{ N}$	(1) (1)	
	Example of calculation $F = 0.05 \text{ T} \times 1.6 \times 10^{-19} \text{C} \times 7.4 \times 10^{-4} \text{ m s}^{-1} = 5.9 \times 10^{-24} \text{ N}$		2
2(b)	Use of $R\cos\theta = mg$ and $R\sin\theta = F$ Or $\tan\theta = F/mg$	(1)	
	Use of $F = \frac{mv^2}{r}$ (do not award if mg used as the force)	(1)	
	r = 20 m ($g = 10 \text{ m s}^{-2}$ leads to $r = 20.04 \text{ m scores MP1 & 2 only})$	(1)	
	Example of calculation $r = \frac{mv^2}{mg \tan \theta} = \frac{v^2}{g \tan \theta}$ $r = \frac{(9 \text{ m s}^{-1})^2}{9.81 \text{ m s}^{-2} \times \tan 22^\circ} = 20.4 \text{ m}$		
	Total for question		3

Question Number	Answer		Mark
3(a)	To curve the tracks/paths Or to produce a centripetal force/acceleration Or to allow particles to spiral Or to produce an arc Or to produce circular motion	(1)	
	So that momentum/energy/charge/ velocity/mass can be investigated	(1)	2
3(b)	The <u>radius</u> of curve gets less Or curvature increases	(1)	
	(Because) particle slows down Or loses energy Or loses momentum	(1)	2
3(c)	(Magnetic field) out of page	(1)	
3(d)(i)	Does not leave a track Or there is only one visible track for μ^+	(1)	
	Clear demonstration of charge conservation in this situation	(1)	2
3(d)(ii)	Reference to momentum	(1)	
	Reference to change of direction of the visible path	(1)	
	(Hence) another particle must have an equal but opposite change of		3
	momentum Or another particle produced to conserve momentum	(1)	
	Total for question		10

Question	Answer		Mark
Number	TY CX DA	(4)	
4(a)	Use of $\Phi = BA$	(1)	
	Converts cm to m Or mT to T $\Phi = 1.1 \times 10^{-4} \text{Wb}$	(1)	
	$\varphi = 1.1 \times 10^{-6} \text{Wb}$	(1)	3
	Example of calculation		
	$\Phi = 6.0 \times 10^{-2} \text{ m} \times 2.4 \times 10^{-2} \text{ m} \times 74 \times 10^{-3} \text{ T}$		
	$\Phi = 1.07 \times 10^{-4} \mathrm{Wb}$		
4(b)	Use of $\mathcal{E} = \Delta \Phi / \Delta t$	(1)	
	Use of time = distance/speed	(1)	
	-	(1)	3
	$\mathcal{E} = 5.3 \text{ mV} (5.0 \text{ mV or } 5.5 \text{ mV depending on value of } \Phi \text{ used, ecf value}$		
	of Φ from (a)) Or	(1)	
		(1) (1)	
	Quotes $\mathcal{E} = Blv$	(1)	
	$l = 6.0 \times 10^{-2} \text{m used}$	(1)	
	$\mathcal{E} = 5.3 \text{ mV}$		
	Example of calculation		
	Time = $0.024 \text{ m} / 1.2 \text{ m s}^{-1}$ t = 0.020 s		
	$\mathcal{E} = 1.1 \times 10^{-4} \text{Wb} / 0.02 \text{s}$		
	= 5.5 mV		
4(c)	Use of $I = V/R$	(1)	
	Use of $F = BIl$	(1)	
	$F = 9.8 \times 10^{-5} \text{ N (ecf value of } \mathcal{E} \text{ from (b))}$	(1)	
	This force is too small to be felt. (this comment must be consistent with their value of force)	(1)	4
	Example of calculation		
	$I = 5.5 \text{ mV} / /0.25 \Omega = 0.022 \text{ A}$		
	$F = 74 \times 10^{-3} \text{ T} \times 0.022 \text{ A} \times 0.060 \text{ m}$		
	$F = 9.8 \times 10^{-5} \text{ N}$		
	Total for question		10